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LIQUID CRYSTALS, 1994, VOL. 17, No. 2, 149-155 

Theory of orientational modes at a nematic-solid interface 

When do surface modes appear? 

by MARTIN COPIC*t and NOEL A. CLARK 
Condensed Matter Laboratory, Department of Physics, 

University of Colorado, Boulder, Colorado 80309-0390, U.S.A. 

(Received 6 January IP93; accepted I 1  November 1993) 

Orientational modes at a solid-nematic interface with Rapini-Papoular 
boundary conditions are analysed in the framework of continuum nemato- 
dynamics, including the coupling of the director and fluid velocity. In the case of 
planar orientation, a surface mode appears in addition to the ordinary bulk modes, 
if the coupling between the director and fluid velocity, governed by the Leslie 
coefficient pz, is large enough. The dispersion relation for the surface mode exhibits 
two distinctive regimes as pz increases. In a realistic situation, the relaxation rate 
of the surface mode is several times slower than that of the corresponding bulk mode. 

1. Introduction 
In a recent paper we have analysed the spectrum of light scattered from a nematic 

liquid crystal in contact with a solid surface [l]. The incoming light wave was 
considered to be confined to a thin layer close to the surface through the use of the 
evanescent wave of the light totally reflected from the solid-nematic interface [2,3,4]. 
The nematic liquid crystal was described solely in terms of the director field, so that 
the influence of the fluid velocity was neglected. In this case no orientational surface 
modes appear, the usual bulk orientational fluctuations being only slightly perturbed 
at the surface. The main effect on the evanescent light scattering spectrum is due to the 
non-conservation of the perpendicular component of the wavevector. The resulting 
expression for the scattered field correlation function is rather complicated and depends 
also on the surface anchoring interaction. In most experimental situations, however, 
the difference between the evanescent wave scattered field correlation function and the 
ordinary, single exponential bulk one is rather small. 

In the present paper we are extending the analysis to include also the coupling 
between the director and the fluid velocity fields. This extension was initially dictated 
by the need to have a more accurate calculation of the scattered light correlation 
function. It is well known that the correction of the effective viscosity in the case of 
bend motion.is quite large due to the fluid backflow effect [5 ] .  The effective viscosity 
changes by a factor of up to about three in typical nematics as the wavevector direction 
changes form perpendicular to the director (splay or twist mode), where there is no 
backflow, to parallel to the director (bend mode), where the backflow is strong. 

* Author for correspondence. 
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150 M. Copic and N. A. Clark 

As we will show in this paper, close to the solid surface the inclusion of the fluid 
velocity has a more remarkable consequence than just changing the effective viscosity. 
An orientational surface mode appears in certain situations if the coupling between the 
fluid velocity and the director is strong enough. The characteristic of the surface modes 
is that their amplitude decays exponentially in the direction perpendicular to the surface 
[6]. It is interesting to note that in the absence of the coupling To fluid velocity, the nature 
of the usual Rapini-Papoular [7] surface interaction is such that the surface modes are 
not possible. 

The inclusion of the fluid velocity adds a degree of freedom to the problem and 
another independent boundary condition for the velocity. The result is that close to the 
surface, the fluid can no longer follow the motion of the director which effectively 
increases the viscous drag on the director. This both modifies the bulk waves at the 
surface and introduces an additional slower surface orientational mode with relaxation 
rate depending on the component of the wavevector parallel to the surface. 

The starting point of the analysis will be the continuum equations of nemato-dynam- 
ics together with the appropriate boundary conditions [8]. We will first show how the 
surface mode appears and then briefly discuss how the bulk modes are modified. 

2. Basic equations 
The most interesting situation occurs when the nematic director is parallel to the 

surface along the x direction (planar orientation) and the director fluctuations 6n are 
perpendicular to the plane of unperturbed director n and the normal to the surface which 
is along the z direction. This corresponds to the twist-bend branch of the bulk modes. 
In this case the y component v of the fluid velocity is coupled to n. Let 0 be the small 
angle that n makes with the x axis. From the equations of nematodynamics we have 

where Ki are the Franck elastic constants, p2 is the Leslie coefficient coupling orientation 
and flow, v , , ~ , ~  are the Miesowicz viscosities and y is the rotational viscosity. The 
boundary conditions are 

a@ w 
- (x, 0) = - 0(x, 0)  
aZ K2 

(3) 

and 

v(x, 0) = 0. (4) 

Here w is the anchoring strength. We seek solution to equations (1)-(3) of the form 

0 = O(z> exp ( iq’x)  exp ( - t / z )  ( 5 )  

and 

v = u(z) exp (iq’x) exp ( - t /z) .  (6) 
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There are very many parameters in the problem and to see which combinations of 
them are essential we introduce dimensionless combinations 

and a new dimensionless independent variable s = wlK2z. 
In order that the pure bend viscosity be positive, c must be smaller than b. All three 

materials parameters, a, b, and c are, in most nematics, somewhat larger than one. In 
5CB, for example, a = 2.6, b = 3.1, and c = 2.5, and unless otherwise specified we will 
be using these values in our numerical examples. As c is proportional to q;, it is a direct 
measure of the magnitude of the coupling between the director and fluid velocity. 

Putting equations (3, ( 6 )  and (7)  into equations (1) and ( 2 )  and eliminating u, we 
get the following equation for 8: 

d29 d49 
ds4 ds2 

[(a + b)q2 - r] - + q2[abq2 - (b  - c)r ) ]8  = 0. ~- 

The boundary conditions become 

d0 
-(O) - O(0) = 0, 
ds (9) 

(10) 
d29 
__ (0) - (aq2 - r)$(O) = 0. 
ds2 

0 must also be finite at infinity. 

functions of the relaxation parameter r. At r smaller than 
The roots of the characteristic polynomial of equation (8) can be considered to be 

r - = (a  - b + 2c - 2 d [ c ( a  - b + c)])q2, 

all roots are real, with two being positive and two negative. At r -  < r < r +  , where 

r + = (a - b + 2c + 2 d [ c ( a  - b + c)])q2, 

all four roots are complex, with two of them having a negative real part. In these two 
regions a surface mode may exist, as we will show in the next section. When r > Y +  , 
there are either four imaginary roots or two imaginary and one real positive and one 
real negative root. In this region we get the bulk mode, which is slightly modified at 
the surface. Its dispersion relation, as will be shown, remains unperturbed. 

3. Surface mode 
As noted above, at r < r + , there exist two roots of the characteristic equation of 

equation (8) with negative real parts, so we can construct a solution to equations (S), 
(9) and (10) in the form 

(1 1) 

where the real parts of 1c1 and 1c2 are positive. A solution of the form (1 1) which also 
satisfies the boundary conditions represents a coupled orientational-flow surface mode. 

(12) 

(13) 

8 = A  exp ( - K I S )  + B exp ( - K Z S ) ,  

The boundary conditions (9) and (10) give 

A ( K I  + 1) + B(h-2 + 1) = 0, 

A[K:  - (aq2 - r)]  + B[K:  - (aq2 - r)]  = 0. 
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9 

(dashed) at q1 = 0 for c = 1.5, a = 2.6 and b = 3.1. 
Figure 1. The dispersion relation for the surface mode (solid curve) and for the bulk mode 

K I  and KZ are roots of the characteristic polynomial and must therefore satisfy 

K:K: = abq4 - (b - c)q2r)] = 0 

K :  + K ;  = (a  + b)q2. 

(14) 

and 

(15) 

For a non-trivial solution of equations (12) and (13), the determinant of this system 
must be zero. Also, K I  and ~2 must not be equal. With this and equations (14) and (15) 
we get 

(16) 

Equation (16) is an implicit dispersion relation connecting rand q for the surface mode. 
Using explicit expressions for K I  and ic2, we can put it in the form 

~ 1 ~ 2  + ( ~ 1 ~ 2 )  + aq2 - r = 0. 

d{ a + b - (d$) + 22/[ab - (b - c ) ] }  
= (r/q2) - a - d [ a b  -(b - c)(r/q2)] ' 

In order for this expression to have a physical meaning, q must be real. This 
condition determines the exact form of the dispersion relation which depends also on 
the magnitude of the coupling parameter c. Three cases can be distinguished. 

(1) c < $ (b2/h + 3u). In the case of very small coupling parameter, q is not real for 
any value of r/q2 and the surface mode does not exist. 

(2) 4(b2/3b + 3a) < c < (b2/a + b). q is real and positive for r/q2 lying between pl 
and p2, where 

pl  = + { 2 ~  - b + c + d [ ( 2 a  - b + c)' + 4a(b - a)]} 

and 

ab 
2 - -  

- b - c '  

In this interval, q attains a finite minimum value at r/q2 = p2 ,  which means that the 
surface wave only appears at a finite value of q. At this value of q, the surface mode 
splits off the bulk mode dispersion relation. Figure 1 shows the dispersion relation for 
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9 

(dashed) at qL = 0 for c = 2.5, a = 2.6 and b = 3-1. 
Figure 2. The dispersion relation for the surface mode (solid curve) and for the bulk mode 

the bulk mode with no perpendicular component of the wavevector q1 and for the 
surface mode, calculated numerically from equation (17). 

(3) c > (b’/a + b). In this case, valid for example in 5CB, q is real and positive for 
P I >  rlq’ < r+/q2. At r = r + ,  q = 0 so that the surface mode exists at any value of q. 
Figure 2 shows the dispersion relation, calculated numerically, for the surface mode, 
again with the bulk mode at q1 = 0 for comparison. 

From the figures, it is seen that the surface mode is always slower than the bulk 
one. When c is small, the difference between the relaxation times of the surface mode 
and bulk mode for wavevector q ( q1 = 0 for the bulk mode) is also quite small and 
the surface mode may be difficult to detect experimentally. When c has a value above 
2, which is usual in most nematics, the surface mode is slower by a factor of up to 3 
for typical values of a and b. 

4. Bulk mode 
As stated in the Introduction, the surface waves are characterized by exponentially 

decaying spatial dependence in the direction perpendicular to the surface. Oscillating 
spatial form represents bulk modes, which may be modified at the surface, but have a 
plane wave form away from the surface. When Y > r + , at least two of the roots of the 
characteristic polynomial of equation (8) are imaginary and the solutions of equations 
(8), (9) and (10) represent bulk modes. Their exact form close to the surface again 
depends on the value of the coupling parameter c. 

(1) c < (b’la + b). In this case, two roots are imaginary and two are always real, 
one of them negative, so that the bulk solution has the form of a plane wave reflecting 
from the surface, plus an exponentially decaying term at the surface 

Q=Aexp(iPs)+Bexp( -iPs)+Cexp(-rcs). (18) 

We now have three constants to satisfy the boundary conditions and so can have 
any value. The characteristic equation becomes simply the well-known dispersion 
relation for the bulk nematic twist-bend mode 
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154 M. Copic and N. A. Clark 

or, putting in the meaning of a, b, c, and q and setting q1 = pw/Kz, 

which is the familiar form [8]. 
(2) c > (b2/a + b). In the case of strong coupling between the director and flow, the 

bulk solution is somewhat more complicated. For r only a little larger than r +  , all the 
roots are imaginary and the solution has the form 

(21) 

which simply represents two reflecting plane waves with different wavevectors (q ,  p) 
and (q , f i r )  having the same relaxation rate. p can again have any value and the 
characteristic equation gives the same bulk dispersion relation (19) or (20). The 
boundary conditions give two relations between the amplitudes A, B, C, and D. p‘ is 
also determined through equations (14) or (1 5), connecting the roots of the characteristic 
equation. 

When p (or r/q2) becomes too large, 8’ becomes imaginary and the solution switches 
back to the form (18). This slightly Complicated behaviour is a consequence of the 
simple fact that the bulk dispersion relation (1 9) has a minimum at a finite value of p 
for c > (b2/a + b), so that for a certain range of r, there are two values of /I giving the 
same relaxation rate. 

0 =Aexp(ips) + Bexp(-  ips)+ Cexp(ip’s)+ Dexp(-  ip’s),  

5. Discussion 
We have shown that the equations of nemato-dynamics predict a surface mode at 

a solid-nematic interface when the director is parallel to the surface. This mode, with 
bend-twist polarization is slower than the usual bulk bend-twist mode with the same 
tangential component of the wavevector. Both the appearance of the mode and its 
slowness are the consequences of the boundary condition requiring that the fluid 
velocity at the surface is zero. The coupling between the director and flow is particularly 
strong for the bend mode, and as the fluid cannot move close io the surface, the surface 
mode can be pictured as a pure rotational bend motion, without the accompanying fluid 
backflow. This makes the effective viscosity larger and so the surface mode is slower 
than the bulk one. 

Up to now we have only discussed the bend-twist mode and the director parallel 
to the surface. Keeping the same surface orientation, the splay-bend mode, where the 
director deviation 6n is in the x-z plane, is also possible. In this case, the situation is 
more complicated because both x and z components of the fluid velocity are coupled 
to the director through the Leslie coefficients p;z and p3. Usually ~3 is much smaller than 
pz. So, while we have not made a detailed analysis of this case, we expect that a surface 
mode with bend-splay orientation also exists and behaves similarly to the bend-twist 
mode. 

The situation is different for the case of the director perpendicular to the surface. 
The bulk mode with the wavevector tangential to the surface, that is in the x direction, 
is either pure twist for 6n perpendicular to the x-z plane or pure splay for 6n along x. 
Pure twist is not coupled to the fluid flow and pure splay is coupled only weakly through 
p3. The corresponding surface wave, if it would exist, would also be predominantly of 
the twist or splay type and so at most weakly coupled to the fluid flow. But we have 
seen that in the case of weak coupling the surface mode does not exist. This qualitative 
argument is also borne out by a calculation similar to the one presented above, in which 
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an implicit relation between the relaxation parameter r and surface wavenumber q has 
no real, physically admissable solution for the range of parameters found in real 
nematics. So, in the case of the director perpendicular to the surface, we do not expect 
a surface wave to exist. This is also the case that was analysed by Papanek in a more 
complicated slab geometry [9]. 

This work was supported by NSF Solid State Grant DMR 92-23729 and ARO 
contract DAAN-04-93-G-0 164. 
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